BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 49 (5), 1417—1418 (1976)

Rate of Protonation of TCNQ Anion Radical in Water

Akihiko Yamagishi

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060 (Received January 27, 1976)

Synopsis. The protonation of TCNQ anion radical has been studied with an oxygen-free stopped-flow apparatus. The protonation rate is proportional to the square of TCNQ⁻ concentration, being independent of the proton concentration. It is suggested that there exists an intramolecular step in which the electronic structure of TCNQ⁻ changes into another one ready to accept a proton.

In the previous work, the protonation of 7,7,8,8-tetracyanoquinodimethane (TCNQ) anion radical was investigated in methanol, ethanol and acetonitrile.¹¹ On the basis of kinetic results, it was confirmed that the first attack of H+ on TCNQ⁻ was reversible according to TCNQ⁻+H+⇒TCNQH⁻.

This paper reports the protonation of TCNQ⁻ in water. It was intended to examine the effect of a dimer species on the reaction rate, since TCNQ⁻ is known to dimerize in water.²⁾ The rate was determined using an oxygen-free stopped-flow apparatus in order to avoid the decomposition of TCNQ⁻ under air.

Experimental

Li⁺TCNQ⁻ was prepared by reducing TCNQ with LiI in acetonitrile. HClO₄ of reagent grade was used as proton source. The concentration of proton was equated to the proton activity at the investigated ionic strength (10⁻⁴—10⁻² M).

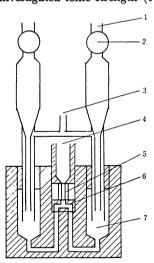


Fig. 1. A mixing part free from oxygen contamination; (1) to a vaccum line, (2) a gleaseless valve, (3) to a He tank, (4) to a rotary pump, (5) a quartz cell, (6) a mixer and (7) the reservoir of a sample solution.

The rate was measured with a Union Giken rapid scan stopped-flow spectrophotometer RA 1300. A mixing part free from oxygen contamination was newly constructed (Fig. 1).³⁾ The whole part was made of Teflon and Pyrex glass sealed by O-rings. About 10⁻³ mmHg vacuum was attainable under pumping. The sample solutions were directly drived by He gas pressure (ca. 0.5 kg/cm²) without pistons.

Thus the decomposition due to oxygen arose mainly from He gas impurity (nominal purity 99.9%). The samples were prepared in a vacuum line. The rate was followed by the absorbance change at 743 nm (a peak of TCNQ⁷ monomer).

Results and Discussion

All measurements were performed under the condition that the initial concentration of TCNQ $^{-}$ was less than 10^{-5} M. At this concentration range, the contribution of a dimer to the total amount of TCNQ $^{-}$ is less than 5%. Thus the protonation rate is given by the decrease of a monomer species per unit time, $-d[TCNQ^{-}]/dt$, with a good approximation. The reactivity of a dimer may reflect on the observed rate through the rapid equilibrium below.⁴

$$2TCNQ^{\tau} \iff (TCNQ^{\tau})_2$$
 (1)

At the constant proton concentration, which is in large excess compared with [TCNQ⁻], the rate is expressed as below (Fig. 2).

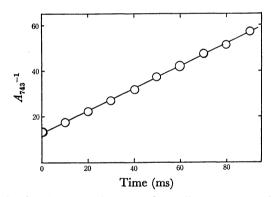


Fig. 2. Second-order plot of the disappearance of TC-NQ⁻; [TCNQ $^{-}$]₀ 3.9×10^{-6} M, and [HClO₄] 3.98×10^{-3} M at 25 ± 2 °C. The vertical scale is the reciprocal of the absorbance at 743 nm and the horizontal scale 20 ms/div.

$$-d[TCNQ^{-}]/dt = k[TCNQ^{-}]^{2}.$$
 (2)

k is found to be independent of the proton concentration for $[\text{HClO}_4] = (2.34 - 13.0) \times 10^{-3} \, \text{M}$. $k = (8.9 \pm 1.0) \times 10^6 \, \text{M}^{-1} \text{s}^{-1}$ at 25 ± 2 °C. From the temperature dependence of k between 14.5 - 35.0 °C, the apparent activation enthalpy is determined to be $\Delta H^+ = 10.1 \pm 0.3$ kcal mole⁻¹.

The second-order dependence of the rate on [TCNQ $^{-}$] (Eq. 2) may seem to suggest the mechanism that the protonation takes place only by way of a dimer form, $(\text{TCNQ}^{-})_2$. This possibility is, however, discarded on the following ground. If the dimer is an active species for protonation, k is expressed by

$$k = k_0 K_D$$

in which k_0 and K_D are the protonation rate of a dimer

and the equilibrium constant of reaction (1), respectively. Since k is independent of the proton concentration, k_0 may be the rate constant of some intramolecular step at which a dimer is activated. Taking $K_D = 2.5 \times 10^3 \, \mathrm{M}^{-1},^2$ k_0 is obtained to be $3.6 \times 10^3 \, \mathrm{s}^{-1}$. Expressing k_0 as $\nu \exp(-\Delta H_0^*/RT)$, and equating $\Delta H_0^* = \Delta H^* - \Delta H_D$, in which ΔH_D is the enthalpy change of reaction (1), $-10.4 \, \mathrm{kcal \ mol^{-1}},^2$ ΔH_0^* is obtained to be $20.5 \, \mathrm{kcal \ mol^{-1}}$. Substituting this value for the above expression of k_0 , the frequentry factor, ν , is determined to be $3 \times 10^{18} \, \mathrm{s^{-1}}$. ν exceeds the electronic vibration. It is very improbable to assume the presence of an activating mode with such a high frequency.

Therefore it is concluded that the second-order dependence of k on [TCNQ $^{-}$] arises from the same mechanism as observed previously in methanol, ethanol and acetonitrile. That is, the disproportionation takes place between protonated TCNQ $^{-}$, or HTCNQ $^{-}$, and TCNQ $^{-}$.

$$TCNQ^{-} + H^{+} \Longrightarrow HTCNQ^{-}$$
 (3)

$$HTCNQ^{\cdot} + TCNQ^{\tau} \longrightarrow HTCNQ^{-} + TCNQ$$

$$HTCNQ^- + H^+ \longrightarrow H_2TCNQ$$
 (5)

The fact that k is independent of [H+] suggests the presence of the intramolecular step in which $TCNQ^{-}$ is activated into a more basic species.

$$TCNQ^{-} \rightleftharpoons TCNQ^{-*}$$
 (6)

Assuming the stationary conditions for both $TCNQ^{-*}$ and HTCNQ, k is expressed by

$$k = \frac{k_6 k_3 k_4 [\mathbf{H}^+]}{(k_{-6} + k_3 [\mathbf{H}^+]) k_{-3}}$$

Under the condition that $k_{-6} \ll k_3 [H^+]$, k is reduced to $k = k_6 k_4 / k_{-3}$

which is independent of the proton concentration as observed in Eq. 2.

One of the possibilities for the nature of the intramolecular step (6) is that TCNQ⁻ transforms electronically into another species which accepts more readily a proton. For example, one of the carbon atoms in TCNQ⁻ may become carbon anion, C⁻, by destructing partially the solvation structures by water molecules.

The author thanks Prof. Masatoshi Fujimoto for his encouragement.

References

(4)

- 1) A. Yamagishi and M. Sakamoto, Bull. Chem. Soc. Jpn., 47, 2152 (1974).
- 2) R. H. Boyd and W. D. Phillips, J. Chem. Phys., 43, 2927 (1965).
- 3) The author expresses thanks to Mr. Toshihiko Nagamura of Union Giken Co. Ltd. for constructing the mixing part.
- 4) A. Yamagishi, Y. Iida, and M. Fujimoto, *Bull. Chem. Soc. Jpn.*, **45**, 3482 (1972).